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ABSTRACT

Turbulent transport of material emitted from a surface may be described by the steady-state, two-
dimensional, semi-empirical diffusion equation. It is shown that, with wind velocity and eddy diffusivity
expressed as power functions of the vertical coordinate, this equation can be solved exactly by introducing
a similarity variable. The solution gives the vertical distribution of concentration for area sources in terms
of the incomplete gamma function. Implications of the solution are discussed,

1. Introduction

In steady conditions transport of gases in the
atmosphere may be described by

dc 9 dc
#(z)—=—K(2)— (1
dx 9z a9z

if the effect of diffusion in the horizontal direction
is neglected. Here = is the turbulent-mean wind,
assumed to be in the x direction, K the coefficient
of eddy diffusivity in the vertical direction, and ¢(x,2)
the concentration of the transported substance. The
z dependence of the wind and the diffusivity may be
represented by empirically determined power laws:

w(z) =uoz?, 2
K (z)=KP. 3)

Eq. (1) has been solved previously with these coeffi-
cients, for boundary conditions appropriate to dis-
.persion of effluents from point and line sources.
References to these works may be found in Monin
and Yaglom (1971). An application of this equation
to diffusion over areas has been made by O. G. Sutton
(1934) for estimating evaporation from a water sur-
face when surface-concentration is specified. A detailed
discussion of the equation with various boundary
conditions has been given by W, G. L. Sutton (1943).
Eq. (1) may be used also for describing the disper-
sion of effluents from a uniform area source by using
the boundary condition

d¢
K(@)—=-0, 2=0, CY)
8z

1 Computer Sciences Corporation, New York, N. Y, 10025.

where Q is the flux from the surface. This is of much
interest because of the need for calculating the flow
of air pollution in urban atmospheres. The steady-
state equation can be useful in predicting air pollution
dispersion over short periods when Q, # and K may
be approximately invariant; or it can be applied to
the calculation of long-term averages of contaminant
concentrations if meaningful averages of Q, K and «
can be obtained. An approximate solution of Egs.
(1)-(4) has been given, and extensively applied, by
Gifford and Hanna (1971). The problem has been
solved numerically by Ragland (1973) who used dif-
ferent velocity profiles. Another approximate solution
of the same problem has been obtained by an integral
method by Lebedeff and Hameed (1975).

In this paper we show that the problem represented
by Egs. (1)-(4) can be solved exactly in a simple
manner if the equations are written in terms of a
similarity variable. We also use the exact solution to
explore two questions of interest in modelling of urban
air pollution, viz. the distribution of surface concen-
tration downwind of an area source, and the distribu-
tion of concentration with height.

2. Solution of the diffusion equation

We consider a uniform area source extending from
#=0 to x=w, with a constant flux Q given by (4).

The boundary condition at the upwind edge of the
source is

c(x,2)=0, x=0, (52)
and for large values of z
c{x,2)=0, z—cw, (5b)

The solution of the problem represented by Egs.
(1)~(S) is facilitated if we make the following ob-
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servations. First, we note that the problem is linear
in Q and the solution should, therefore, also be linear
in Q. Consideration of the lower boundary condition
(4) then implies that the solution ¢ is of the form

c(x,z)=—(—2—z‘—f‘¢(x,z), (6)
K,

where ¢ is a dimensionless function, independent of Q,
which satisfies the equations:

¢ (x,2) 9 90
uozl+a~ﬁ =K0—Zﬂ_’[zl‘3¢(x>2)]7 (7)
ox 0z 0z
0
s[5 (r,2) 1= —1, 2=0, ®
0z
$(,2)=0, =0, ()
B(2) =0, z—c. k)

Let us now consider the scaling transformations

’

x=0x, z=M\7,

where § and \ are constants. Eq. (7) then becomes

)\2+a—ﬂ a
- 102’ ””_ﬂ—é—/d) (82" \5")
%

9 ]
=Koe—2" " P62’ ') ]. (10)
9z’ 97

Now, if we choose §=N*"**F then ¢(éx, A\z) satisfies
the same equations (7)-(9) as ¢{x,2). Since the solu-
tion to these equations is unique, it follows that

(NP, hz) = (x,2). (1)

Since A is an arbitrary constant Eq. (11) can hold if,
and only if, ¢ contains x and z in the combination
(z***F/x). We therefore define the dimensionless
variable
o 22HeB
=

Ko X

(12)

and write the equations for ¢ in terms of w. Eq. (7)
then reduces to the ordinary differential equation

(14») 1
' (w)+ + "(w)=0, 13
St~ =0 1)
where
1-8
V—Z-i—a—ﬁ.

This equation may be solved immediately to get

1
¢ (w) =¢le+y exp[ (14)

<z+:—ﬁ'>2]’
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where ¢o is a constant of integration. We integrate
this equation and satisfy the asymptotic boundary
condition [Eq. (5b)] to obtain

$()=————T| ——— |, (15
“ (2+a—ﬁ)2”[ (2+a—l3)2] 1)

where T' is the incomplete gamma function (Jahnke
el al., 1960).

The constant ¢o is chosen to satisfy the lower
boundary condition [Eq. (8)]. In terms of =, this
condition may be written as

d
(2-|-a—ﬁ')w1—”d—[w”¢(w)]= -1, w=0. (16)

We now substitute Eq. (15) in Eq. (16) and use the
expansion for the incomplete gamma function:

o (=1)my»
T(a,y)=T(a)—y* > ———,
y)=T(a)—y Z it
a0, —1, =2, ---. (17)
This gives, in the limit w—0,
o _ (@24a—p)* (18)
T (-
Hence,
© : - ——]
$l)=——— 1| — —-_—] 9
@+a—BT(—) L @+a—p)

Substituting this in Eq. (6) gives us the required
solution:

Q 2F w
5)=— T —y,——— | (20

In the study of dispersion of air pollution one is
particularly interested in the concentration of the
pollutant near the surface, 2=0. This may be ob-
tained by substituting the expansion (17) in (20) and
taking the limit 2—0. We find that for §<1 the con-
centration on the ground is

<0>_2(_2+_"‘__5>2:(K°’“)” s<t. (D)
o _Ko yI(1—v) o ’ -

For 821 the concentration at z=0 is infinite.

In the derivation given above we have assumed
the area source to extend from x=0 to x=o with
a constant Q. It can be generalized directly to the
case of a variable source with strength Q(x) for
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xo<x<x1. The solution (20) is then replaced by

g=h

1
c(x,2)=—

Ky (24+a—B)T(1—v)

(z1—20) w
X/ I’l:—y‘, ————————:ld(_)(xl—x), (22)
0 (2 +o '—»8) 2

and for concentration on the surface we obtain

c(x,0)=—

& i)

%o
(z1—20)
X / #dQ(x1—x). (23)
0

The integrals in (22) and (23) are defined as Riemann-
Stieltjes integrals.

We have noted that for 821, the concentration
at 2=0 becomes infinite. In the discussion in the
following section, therefore, we consider the range
0<B<1, which means that the parameter v takes
values between 0 and 0.5, for positive a.

3. Discussion of the solution

We now discuss the nature of the solution to the
diffusion equation obtained in the previous section.
This is of particular interest in the calculation of
dispersion of contaminants in urban areas which are
characterized by grid-like patterns of area sources.

a. Distribution of surface concentralion in the wind
direction

In air pollution studies values of concentration on
the ground at various locations in a region are of
primary interest. Ground concentration within the
area source is given by Eq. (21). To obtain the con-
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centration at points outside the source, we add to
the equation the solution for a source of strength
(—Q) for x> L, and obtain

Q (2+a—p)»?
c(p)=————
Kx) J/I‘(l—‘ll)

We have plotted ¢(x)/C(L) as a function of x in
Fig. 1, for »=0.45 (solid curve) and »=0.05 (dashed
curve). We note that the distribution of ground con-
centration is sensitive to ».

For small » (i.e., B~1) the concentration rises
quickly from the upwind edge (x=0) and its gradient
in the source region (0<x<L) is small. Immediately
outside the source there is a very sharp drop in con-
centration, such that ¢(2L)=0.035 ¢(L). Thus, the
assumptions of the box model that the distribution
be uniform horizontally in the source region, and zero
outside, hold good when » approaches zero.

For large » (i.e., B~0) the rise of concentration
from the upwind edge is relatively more gradual in
the source region. For x> L, although initially the
decrease in concentration is considerable [c(2L)
=0.37 ¢(L)], the gradient of the curve becomes very
small for larger values of x. This slow decrease is
important because it means that in a grid of area
sources, such as a city, distant successive sources add
nearly equal amounts to concentration at a point.
In this case, therefore, the total contribution of up-
wind sources may add up to be comparable to the
contribution of the local source. In fact, it may be
shown, for an array of identical sources, that the
contributions to average ground concentration over
an area by the upwind sources and the local source
are related by the expression

(ﬁ)'[xv_(x—}:)v], x> L. (24)

Uo

contribution of N upwind area sources

=(14»)N"—1.

contribution of local area source
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~
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F1c. 1. Distribution of surface concentration along the wind direction. The source
extends from =0 to x=L. The solid curve is for »=0.45 (8=0, i.e., diffusivity
nearly constant with height), and the dashed curve is for »=0.05 (8=~1, ie.,
diffusivity increasing approximately linearly with height).
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b. Vertical distribution of concentration

Vertical distribution of pollutant concentration over
an area source is of interest in air pollution studies.
In the absence of knowledge of the vertical profile of
concentration, ad hoc assumptions about the profile
and its extent, i.e., the “mixing depth,” have been
introduced in most dispersion calculations in the
literature. In the solution of the diffusion equation
obtained above, the vertical profile is given in terms
of the incomplete gamma function of the similarity
variable w= (#o/Ky)(s***#/x). The functional de-
pendence of the solution on z may be conveniently
represented by

c(x,2)

¢(x,0)

=V£VI‘(—"V> E)) £= (25)

2+a—B)?

where ¢(x,0) is the concentration at 2=0. This func-
tion is displayed in Fig. 2 for »=0.45, 0.32, 0.08
and 0.05. We can see that the decrease in concentra-
- tion near ¢=0, i.e., z2=0, becomes very sharp as v
approaches zero. For instance, ¢(x,3) becomes half of
c(x,0) at £=0.058 for »=0.32, and at £=0.51X10"°
for »=0.05. To illustrate the difference in the profile
for different values of » we consider the case of =1—«
and assume that the magnitudes of #, and K, are
equal. Then at a downwind distance of 10 km, ¢(x,2)
becomes half of the ground concentration ¢(x,0) at

for »=0.32 (@=0.90 , 3=0.10)
z= 0.01m, for »=005 (@=0.056, 3=0.944))

z=20 m,

It is clear that for »=0, that is, 8~1, the solution
predicts that almost all of the concentration is located
at 2=0. In such a case K(z) near the surface ap-
proaches zero so rapidly that vertical diffusion be-
comes negligible and the emitted material accumulates
near the surface.

c. Application of the equation

In application of the diffusion equation one needs
the parameters defining the wind velocity and the
diffusivity given in (2) and (3). A power law can
usually be fitted to measured values of wind velocity
as a function of height. Eddy diffusivity may be
obtained by the use of boundary layer theory and
also approximated by a power law. Two interesting
semi-empirical methods for obtaining #(z) and K(2)
as power laws are given by Gee (1966) and Vaughan
(1961).

Another possibility is that, if measurements of wind
velocity and pollutant concentrations are available,
K (z) may be obtained from the solution of the dif-
fusion equation. Parameters defining K(z) may be
obtained in this manner for different classes of atmo-
spheric stability. These may then be used later to
calculate pollutant concentrations.
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C(X,2)/C(X,0)

-6 -4 -2 -0 -8 -6 -4 -2 o] 2

Fic. 2. Vertical distribution of concentration for a given x. The
horizontal coordinate is

%o 1 Zrta—8
8K ey«
Note that as » approaches zero (i.e., 8— 1) the concentration

drops to nearly half of the ground concentration for extremely
small values of &.
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